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Abstract A major problem when designing mathematical models of biochemical

processes to analyze and explain experimental data is choosing the correct degree of

model complexity. A common approach to solve this problem is top-down: Initially,

complete models including all possible reactions are generated; they are then itera-

tively reduced to a more manageable size. The reactions to be simplified at each step

are often chosenmanually since exploration of the full search space seems unfeasible.

While such a strategy is sufficient to identify a single, clearly structured reduction of

the model, it discards additional information such as whether somemodel features are

essential. In this chapter, we introduce alternate set-based strategies to model reduc-

tion that can be employed to exhaustively analyze the complete reduction space of a

biochemical model instead of only identifying a single valid reduction.
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3.1 Introduction

Amajor problem when designing mathematical models of biochemical processes to

analyze and explain experimental data is choosing the correct degree of model

complexity. Minimalistic models that include only the core reactions of a regu-

latory pathway will often fail to capture all mechanisms and be unable to reproduce

the experimentally observed dynamics. In contrast, models that include all possible

interactions may suffer from overfitting, strongly diminishing their predictive and

analytical value. This becomes especially severe in pathways where interacting

molecules are modified by, or bind with multiple interaction partners, as is common

in inter- and intracellular signaling.

A common approach to solve this problem is top-down: Initially, complete

models including all possible reactions are generated; they are then iteratively

reduced to a more manageable size. The reactions to be simplified at each step

are often chosen manually since exploration of the full search space seems unfeasi-

ble. While such a strategy is often sufficient if the goal is limited to finding a single,

clearly structured reduction of the model, other questions that could be of interest

from a modeling point of view are not considered. Examples for such questions are:

• Are some model features essential, i.e., can never be reduced?

• What are the smallest versions of the model that are still viable?

• Is there a logical pattern common to all valid model reductions?

These questions will often require the analysis of all possible model reductions, a

task that is both time consuming and repetitive, making it ill-suited to manual

analysis. Explicit enumeration and testing of all possible reductions is prohibitively

expensive, imposing the need to utilize heuristic search strategies. In this chapter

we will discuss a set-based strategy that is suited to answer the questions posed

above. While we explain the strategy in the context of ODE modeling with mass

action kinetics, it can be adapted to a wide range of models, including SDEs,

Boolean models, and stochastic simulations. We finish the chapter with an

application to CD95 signaling.

3.2 Graphical Structuring of ODE Models

It is often helpful to organize ODE models into a graph-like data structure. Not only

does this allow easy visualization of the model, it also allows the utilization of

established graph-based operations, like the removal of edges, and graph-based

algorithms, e.g., connectivity analysis with little adaption. This is frequently done

by researches, however, depending on the exact application, the details of the

representation differ. To avoid confusion, we give a short overview of the approach

we utilize. An example for a mass action ODE that is represented by a graph is

illustrated in Fig. 3.1. Note that while we limit ourselves to mass action kinetics in

this chapter to avoid excessively complex notation, the general approach is also

valid for more complex reaction kinetics, such as Michaelis–Menten kinetics.
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We focus on ODE models that can be decomposed into two types of elements:

states and reactions. States represent the molecular species of the system we want

to analyze, whereas reactions are the biochemical reactions that change one or more

molecule into other products. For a given ODE model, we will usually know the

value of all reactions depending on the current state values and the first derivate of

all states depending on the current reaction values. This is sufficient to simulate the

model using a numerical solver.

Based on the following definitions:

S1. . .k The set of all states

R1. . .j The set of all reactions

kn The kinetic rate of reaction n.
SubsR Rnð Þ is the index set of all states that are substrate of reaction n.
SubsSðSnÞ is the index set of all reactions that consume state n.
CatR Rnð Þ is the index set of all states that are catalysts of reaction n.
CatS Snð Þ is the index set of all reactions for which state n is a catalyst.

ProdðSnÞ is the index set of all reactions that produce state n.
stoich Si;Rnð Þ is the stoichiometric constant of state i in reaction n (the stoichio-

metric constant denotes how many molecules of each type partici-

pate in a reaction, e.g., for a homodimerization the stoichiometric

constant is 2).

Fig. 3.1 A graphically represented ODE model. An ODE model represented as a bipartite graph.

Green boxes are states (usually biochemical molecules), white circles are reactions. A state can be

either a substrate (normal line) or a catalyst (dashed line) for a reaction. A directed line from a

reaction to a state indicates that the reaction produces this state. In this model, the state P1–P3 act

as input (e.g., signaling molecules, primary metabolites. . .), the state P7 is the final model output.

P1 dimerizes with either P2 or P3. Both the P1–P2 dimer (P5) and the P1–P3 dimer (P4) can be

activated independently into P7 (P5 via the intermediate P6, P4 directly). In addition, there is a

cooperative mode of activation where P4 catalyzes the activation of P5
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The value of reaction n at time t:

Rn ¼ kn
Y

i2ðSubsR Rnð Þ [Cat Rnð ÞÞ
S
stoichðSi;RnÞ
i

The change of state m at time t:

d

dt
ðSnÞ ¼ þ

X
i2ProdðSnÞ

stoich Sn;Rið Þ � Ri �
X

i2SubsSðSnÞ
stoich Sn;Rið Þ � Ri

To generate the model graph for a given ODE:

For a graphical representation of this an ODE system, both states and reactions

are considered nodes in a model graph. The model graph is bipartite graph, i.e.,

there will only be connections between reactions and states, but not between states

and states or reactions and reactions.

• There is a directed edge from every state n to every reaction m if n 2 SubsR Rmð Þ,
i.e., if state n is substrate for reaction. We label all these edges with stoich

Sn;Rmð Þ and color them as substrate influences.

• There is a directed edge from every state n to every reaction m if n 2 Cat Rmð Þ,
i.e., if state n catalyzes reaction m. We label all these edges with stoich Sn;Rmð Þ
and color them as catalytic influences.

• There is a directed edge from each reactionm to each state n ifm 2 ProdðSnÞ, i.e.,
if reaction m produces state n. We label all these edges with stoich Sn;Rmð Þ and
color them as productions.

It is easy to see that additional, more complex kinetics can be supported by

simply increasing the number of different colors used to color the edges from states

to reaction nodes.

3.2.1 Experimental Noise Model and Error Function

One of the most important tasks in model-driven systems biology is to evaluate how

well a model explains experimental observation. Typically, we will want to run

simulations of different experimental conditions, such as different intensities of

stimulation and compare the resulting model dynamics to experimental

measurements. Figure 3.2 illustrates how the simulation of biochemical models

produces time course data for different experimental conditions.

While generating the experimental data is usually straightforward and can be

done using established toolboxes such as the SBtoolbox 2 for Matlab

(Schmidt 2006), the comparison is less straightforward and can be influenced by

personal bias. To minimize this subjectivity, it is useful to quantify the difference

between model and experimental data. This is often done by utilizing error
functions. An error function quantifies the difference between time course data
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generated by the model and experimental observations. However both the

generation and the interpretation of error functions and their values are nontrivial.

A major problem in systems biology is that data will often be very noisy; even

repeated measurements of the same system at the same time can vary by 10% or

more. This is caused both by measurement errors and by the high variability of

biological systems. In contrast deterministic models such as ODEs will always

reproduce identical results without any noise; therefore, it is unrealistic to expect an

ODE to reproduce experimental observations perfectly.

To deal with this situation, we try to capture the experimental variance in an

error noise model. For many different experimental setups, we observe that mea-

surement errors and experimental variance are normally distributed N(m, s2) with a
mean m of zero and a variance s2 that depends on the exact experimental setup.

We assume that the “basic” behavior of the system is determined by the determin-

istic model and that the difference between deterministic model and observed data

is caused by the experimental variance. This is illustrated in Fig. 3.3.

Observation = deterministic behavior (ODE modelÞ
þmodel variance (stochastic componentÞ

Based on this assumption we can calculate how probable it is to observe our

experimental data. Initially we will only consider the case where a single variable

(e.g., protein concentration) is observed at the time points 1. . .n. This is mainly done

to avoid confusing notation, in the end we will derive the total error value by simply

summing over all individual error values. Let xobs ¼ xobs1...n be the vector of our

experimental observations if only a single replicate of the experiment is performed.

a
b

c

Fig. 3.2 The behavior of dynamic systems can be changed by different experimental conditions.

(a) A typical experimental setup will often involve the reduction or complete knockout of one or

more states of a dynamical system. In our example, the protein P3 is completely knocked out

(set to concentration zero). (b) In wild-type cells, the reaction to stimulation is an early peak in

activity (at around 5 min), followed by a slow decay to a constant concentration level of about 50.

(c) In knockout cells the early peak at 5 min is missing. The later activation remains unaffected by

the knockout
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If the experiment is repeated multiple times, xobs instead contains the mean value of

all observations. The deterministic time course data produced by simulating our

ODE model is xsim ¼ xsim1...n and xstoch ¼ xstoch1...n is the difference between observation

and simulation that we attribute to stochastic effects in our experimental setup:

xobs1...n ¼ xsim1...n þ xstochi

xstochi ¼ xobs1...n � xsim1...n

with xstochi � Nðm; s2i Þ and m ¼ 0 we find (without proof) that the probability for

every single observation is

P xstochi

� � ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2i

p e
�

xstochið Þ2
2s2

i

If we assume independence between the experimental variations at different

time points (e.g., that a large variation at an early time point is not the cause of large

variations at later time points), we can derive the probability for the entire time

course by multiplying the probabilities of each single time point:

P xstoch
� � ¼ Yn

i¼1

P xstochi

� � ¼ Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2i

p e
�

xstochi

� �2
2s2i

a b

c d

Fig. 3.3 Experimental observations of dynamic systems can often be decomposed in determin-

istic and stochastic components. (a) Time course data from a completely deterministic system,

e.g., either a biological system with little variance or an artificial model (blue line) and the

corresponding measurements with added stochastic effects (red circles). (b) To deal with stochas-
tic effects, multiple measurements of each time point are performed, resulting in multiple values

for each time point (red circles). (c) To quantify multiple replicates of experimental

measurements, the mean value (circle) and standard deviation (error bars) for each time point

are determined. (d) Comparison of the deterministic time course (blue) and the quantification of

multiple observations (red)
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P xstoch
� �

is already a quantification of how well our model fits the experimental

data; however, in practice this formula is rather inconvenient as it requires multiple

evaluations of the exponential function and generally results in extremely small

values that are too small to be represented in standard computational variables.

However we can simplify the equation by dropping the normalizing factor

1=
ffiffiffiffiffiffiffiffiffiffi
2ps2i

p
and rescaling it on a logarithmic scale. Logarithmic rescaling allows us

to remove the exponential function and replace the product over each time point

with a sum. In addition, as we are generally interested in an equation that directly

evaluates the quality of the simulation xsim1...n, we substitute x
stoch
i ¼ xobs1...n � xsim1...n and

derive the error function EF xsim
� �

:

EFðxsimÞ ¼
Xn
i¼1

xobsi � xsim
� �2

2s2i

" #

This formula is the sum of squared residuals, normalized by the variance of the

observation. The value of the error function is zero if xobs ¼ xsim and positive

otherwise; the closer the value of the error function is to zero, the better our

simulated data fits to our experimental observations. If multiple replicates of the

experiment have been performed, the experimental variance s2i can be calculated

directly from the data points; otherwise it has to be estimated based on expert

knowledge.

3.2.2 Parameter Optimization

Based on our introduction to ODE’s in Sect. 3.2, it is obvious that the value of the

simulated time course xsim depends on a set of parameters. We will group all

parameters of the ODE system into a vector of parameters we will call y, where
yi is the i-th parameter. For a mass action kinetic model, ywill usually consist of the
kinetic rates of all reactions.

We will utilize the error function introduced in the previous section to find a

value for y that results in a good fit between simulation and experimental data.

We do this by trying to minimize the value of EFðxsimðyÞÞ. This process is called
parameter optimization. As entire books have been written on the topic, we will

limit us here to an overview over a few common techniques. All approaches

introduced here are based on the same general idea; an initial value for y is picked
(either based on literature values or at random) and subsequently modified with

the goal of improving the error function value. This is done iteratively until

some kind of ending criteria is met. Common ending criteria include a fixed

number of total iterations or a number of iterations without marked improvement

in function value.

A very basic strategy is the hill climbing algorithm. In each step the local

neighborhood of the current y is explored. To do so, a candidate for a new
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parameter set, ŷ is generated by adding a value that depends on the exact

implementation of the algorithm to a single element yi . If the change results in

an improvement, y is updated to the new value ŷ. Otherwise another candidate is
generated by subtracting the same value from yi and again, the new candidate is

accepted if it results in an improvement over the previous error value. This is then

iteratively repeated for each element of y until no further improvement is made.

While this method is easy to implement, it has the disadvantage of frequently

becoming stuck in local optima.

Another type of local methods are steepest ascent methods. In these methods, the

next step in each iteration is chosen based on local evaluation or approximation of

the first derivative of the model dynamics. This will usually result in a step that

optimizes the improvement of the error function. While this sounds like a promising

approach, it is limited by how well we can approximate the first derivate of the

model. In addition, models that are determined by higher-order derivates will result

in very small steps, causing long run times. As in hill climbing algorithms, there is a

danger of getting stuck in local minima.

A common heuristic to deal with the issue of local optima are simulated
annealing algorithms. The idea of these algorithms is that in each step a proposal

is generated by randomly changing the current parameter vector. If the change

results in a score improvement, it is always accepted. However, if the error value

increases, the proposal is still accepted with a certain probability. This probability

depends on a temperature value that start at high value and is then decreased

according to a cooling schedule.

3.2.3 Choosing Significant Error Function Cutoffs

In the previous sections we discussed how to quantify the difference between the

simulated time course data and the experimental observations, and gave an over-

view over parameter optimization techniques that can be used to minimize this

quantified value in order to produce a good model fit. However, when we try to

reduce models, we face the question whether a slightly worse error score justifies a

significant simplification of the model. This leads to the question of cutoff values of
the error function: Up to which error value can we say that a model reproduces our

experimental data satisfactory?

One way to derive cutoffs for error values is based on the assumption that the

observed data points are normally distributed around a time course generated by a

deterministic dynamic. This is done using the w2 distribution. The w2 distribution

calculates the probability that summing over a number k of squared, uniform

normally distributed random variables results in a certain value. If we keep in

mind that we assumed ðxobsi � xsimÞ to be normally distributed, this is exactly what

we do in the error function EFðxsimÞ ¼ Pn
i¼1

xobsi �xsimð Þ2
2s2

i

� �
.
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Based on the w2 distribution, we can estimate the expected deviation of an

observation from the real value of the generating system and the resulting expected
error score per time point. For example, we expect that 68% of all data points

should be within one standard deviation of the deterministic time course

(contributing an error value less than one error unit per time point) and 95% should

be within two standard deviations (contributing an error value less than four error

units per time point).

The exact calculation and interpretation of confidence intervals using this

method is nontrivial and exceeds the scope of this chapter. However, as a rule of
thumb based on these considerations, we expect a normalized sum of squared

residuals lesser or equal to the number of time points to be almost always a rather

good fit that explains most data points. Likewise, a score larger than four times the
number of time points is almost always a bad fit that either completely misses some

data points or shows a significant deviation from every single measurement.

It should be noted that, no matter how error cutoff values are derived, they

should always be analyzed in the context of the experimental data and the biological

system. It is very possible that a way to derive a cutoff value that works perfectly

well for one set of data results in a cutoff that is to strict or to permissive in a

different context. It generally makes sense to test multiple cutoff values and

compare which value is closest to the interpretation of the experimental data in a

biological context (Fig. 3.4).

3.3 Reduction of Graph-Based Models

In the context of this chapter, we focus on reducing a model by removing reactions

that are not required to explain the observed dynamic behavior of the model.

This reduces the degree of parameter under determination and helps to identify

the core dynamics essential to the model.

In general, two different types of reactions compose a biochemical model. One is

a set of core reactions that can be considered essential for a pathway. These reactions
have either been confirmed in previous experiments, are established as a gold

standard in literature, or are required in the model for structural reason, e.g.,

reactions that are important for model connectivity. We are generally not interested

in reducing a model by removing core reactions.

In addition there are auxiliary reactions or reduction candidates Rred, reactions

that are either of a hypothetical nature or of a detail level that might be inappropri-

ate for the desired model. Examples for reduction candidates often include

reactions that have been predicted based on binding domain analysis and PPI

data, but have not been confirmed in vivo. For our analysis, any subset of Rred is

a potential reduction of the model. The set of all subsets of a set X is also called the

powerset of X, which we will denote PðXÞ: Thus the entire space of possible

reductions Sred is PðRredÞ: The size of a powerset grows exponentially to the
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base 2. This means that the total number of possible reductions of a model is 2n,

where n is the number of reactions in Rred.

Most times we find that not all members of Sred are valid reductions, i.e., able

to reproduce experimental data with a quality below a cutoff as explained in

Sect. 3.2.3. The challenge lies in identifying which reduction candidates are not

supported by experimental evidence.
It should be noted that parameter optimization for an ODE model is often a

computationally expensive task that can take multiple minutes per attempt. It is

therefore necessary to keep direct testing of reductions to a minimum. Instead,

a b

c d

Fig. 3.4 Visualization of different kinds of cutoffs. (a) Cutoff based on one standard deviation

(cutoff value equal to the number of time points). The black line is a possible simulation that

satisfies the cutoff value, the green lines visualize the simulation +/� one standard deviation.

Note that the borders visualized with respect to the simulated data; this is functionally identical

to considering the borders with respect to the experimental data points. Note that it is not necessary

that all points have to be inside visualized borders; if some data points are close to the black line,
others might be outside the one standard deviation border. (b) Cutoff based on two standard

deviations (cutoff value equal to four times the number of time points). The red lines visualize
a two standard deviation border, (c) Cutoff based on two standard deviations, worst case fit.

The simulated time course still results in an error value below the cutoff, despite two data

points being outside red borders. In this case, the two standard deviation cutoff is too permissive,

as an important qualitative feature of the data, the early activity peak is lost. (d) By analyzing

the minimal error score at which the peaking behavior is lost, we derive a new error cutoff based on

1.4 standard deviations. The new worst case fit (black line) still shows a clear early peak

66 D. Rickert et al.



we hope to verify/reject a large number of reductions indirectly. Since the complete

reduction space grows exponentially with the number of auxiliary reductions, brute

force checking of every reduction candidate will often take a prohibitively long

time. Heuristic strategies need to be employed to speed up the identification

reductions that are not supported by experimental evidence.

3.3.1 Indirect Model Verification and Rejection

Indirect model acceptance and rejection are based on a simple but powerful

property resulting from the definition of our reduction framework. Based on the

definitions given in Sect. 3.2, we find that removing a reaction from a model is

identical to setting the associated kinetic parameter to zero. This implies that

removing a reaction from an invalid model cannot transform the model into a

valid model. Likewise adding reactions to a valid model cannot make this model

invalid, as the newly added reactions could potentially have a kinetic rate of zero.

This results in the following theorem:

Core theorem of set-based model reduction:

1. If a reduction is identified as valid, all reductions that are subsets of the valid

reduction are also valid.

2. If a reduction is identified as invalid, all reductions that are supersets of the

invalid reduction are also invalid.

These properties are essential to our design of reduction strategies. They allow

us to accept valid and reject invalid reductions without the need to explicitly testing

them. This is necessary, as the complete search space doubles with each additional

reduction candidate, making explicit testing of all reductions impossible. We need

to maximize the information gained indirectly in order to deal with the exponen-

tially growing search space.

If we compare the indirect information gained from accepting/rejecting a reduc-

tion, we find that these will strongly differ between different candidates. Most of the

time, reduction with few elements provide the most indirect information gain if they

are rejected, as they are subsets of a larger number of reductions than large

reductions. In contrast, large reductions provide the most information if they are

accepted.

Direct testing of a reduction candidate is based on the analysis introduced in

Sect. 3.2.2, 3.2.3, e.g., multiple parameter fitting attempts are started that attempt to

find a model parameterization that explains the observed data with a quality below a

cutoff. While we only introduce cutoffs that are motivated by statistical analysis of

a given error model, cutoffs and error functions derived in a different way can also

be utilized without changing the other aspects of model reduction. If a parameteri-

zation is found that results in an error value below a certain cutoff, the reduction is

accepted as valid.

3 Systematic Complexity Reduction of Signaling Models and Application. . . 67



Unfortunately, we often find that the probability of accepting a large reduction

picked at random is rather small; likewise, small reductions are more likely to be

accepted than large reductions. This implies that, in order to analyze the reduction

space efficiently, we need to focus on strategies that identify large reductions that

are likely to be accepted or small reductions that are likely to be rejected with a

higher than random frequency.

In addition to estimating the probability of rejecting/accepting a reduction, a

second important aspect to optimize indirect information gain is keeping track of

the reductions that have already been accepted and rejected. While accepting a

large reduction will often result in a significant information gain, this is only true if

only a small number of its subsets have already been accepted. In contrast, if most

subsets of a large reduction candidate have already been accepted, the information

gained by accepting the candidate is still small.

3.4 Topological Model Analysis

As already mentioned, the reduction space we wish to analyze contains all combi-

natorial subsets of the reduction candidates of a model. This space will frequently

contain reductions that can be identified as unable to reproduce experimental data

based solely on the topology of the reduced model (e.g., cases where biologically

important states become disconnected from the rest of the model). Examples for

such reductions are illustrated in Fig. 3.5. We call these reductions topologically
invalid reductions.

In addition, it is possible that different sets of elementary reductions result in

models that show identical dynamic behavior. For these redundant models, it is

sufficient to test the validity of one reduction of the redundancy group and subse-

quently assign all other models the same validity. Examples for redundant models

are given in Fig. 3.5.

To recognize topologically invalid and redundant models we use the concepts

of observability and controllability and activity. While these properties are inspired

by the concepts with the same names as utilized in systems engineering, it should

be noted that we use significantly different versions. We illustrate these concepts

for the ODE models, but they can be applied in a similar way to a large range

of different models, including SDE models, Boolean models, and agent-based

models.

3.4.1 Controllability

We use the property controllability to keep track of which inputs are able to control
which intermediate- and output states. An input is said to control another state if

changing the input results in a change of behavior for the second state. An example
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for this is that during a gene knockout experiment, all other genes that are up- or

down regulated are controlled by the gene knocked out. Models that do not connect

the genes we observe to be experimentally controlled by the gene knocked out can

be rejected without time-consuming parameter optimization attempts. For the type

of ODE models that we consider, the control of states is propagated between the

states by the reactions, as states do not directly depend upon each other. Reactions

in turn are completely determined by a set of states that is specific for each reaction.

Intuitively, we find that an Input State SI:

– Controls itself by definition.

– Controls a reaction Rn if ðSubsR Rnð Þ [ CatR Rnð ÞÞ contains any controlled states,
i.e., if any substrate or catalyst of is Rn controlled.

a b

c d

Fig. 3.5 Examples for valid, invalid, and redundant reductions. (a) is the original, unreduced

model as introduced in Fig 3.1. (b) is a topologically valid reduction. Although both independent

pathways that lead to the production of P7 have been removed, P7 is still produced by the

cooperative pathway (reaction R3). If the cooperative reaction happens at a significantly higher

rate than both indirect pathways, such a reduction can be realistic in a biological context. If this

is the case, the model behavior is determined primarily by the cooperative activation mechanism.

(c) is an invalid reaction. The direct activation of P4 has been removed. In addition, the dimeriza-

tion of P1–P2 has been removed, so that P5 is no longer produced. This results in a situation where

P7 can no longer be produced, rendering the entire pathway inactive. Therefore, model (c) is an

invalid reduction. (d) This reduction is still able to produce P7 through the independent activation

of P5, but can no longer produce state P4. Thus it is a valid reduction. However, it still includes two

reactions that depend on P4 (R3 and R5). These reactions will never have a value larger zero,

rendering them obsolete. A reduction of model (d) that would also remove R3 and R5 would act

identically to model (d) without obsolete reactions. Therefore, we call model (d) redundant
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– Controls a state Sn if ðSubsSðSÞ [ Prod Snð ÞÞ contains any controlled reactions,

i.e., if any reaction that either consumes or produces Sn is controlled.

These intuitive definitions are lacking in so far as they allow for a state’s control-

lability to depend recursively upon itself. While such a situation is easily recognized

by a human researcher, a computer-based analysis needs to explicitly account for

this possibility. It should be noted that these conditions are only necessary, but not
sufficient to confirm control. As we only consider topological criteria, parameter-

izations can exist for which we do not observe control relations despite the topologi-

cal conditions being fulfilled. This is the case if, e.g., the kinetic parameter of a

reaction that is required for a control relation is set to zero.

3.4.2 Observability

The property observability is closely related to controllability. We call a state

observable if changes to the state (either at a certain time point or to the initial

conditions) can be recognized in the states that we are able to measure experimen-

tally. Similar to the limitations imposed in the analysis of controllability, we are

again limited to necessary conditions and have to avoid recursive dependency.

We will use observability to identify reactions that are unimportant for the model

dynamics we observe and can be removed. If any reactions are identified that are

not observable, the model is by definition redundant, as a model that removes these

would behave identically with respect to our experimental observations.

A state Sn:

– Is observable by definition if Sn is an output state

– Is observable if SubsS Snð Þ [ CatS Snð Þð Þ contains any observable reaction

A reaction Rn:

– Is observable if SubsR Rnð Þ [ Prod Rnð Þð Þ contains any observable state

3.4.3 Activity

We find that simulations of biological processes frequently contain only a few states

that start with an initial concentration greater zero, whereas the majority of states

will have an initial condition of zero. This can result in situations where multiple

states and reactions will always have a concentration of zero, for all possible

experimental setup. We use the property of activity to determine if a reduced

model contains any reactions that will always have a value of zero. If this is the

case, the model is redundant. In addition, if any output state is not active, the model

is invalid (Figs. 3.6 and 3.7).
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A state Sn is active:

– If it has an initial concentration larger than zero

– If Prod Snð Þ contains any active reactions

A reaction Rn is active:

– If all states in SubsS Snð Þ [ CatS Snð Þð Þ are active

a b

c d

e f

Fig. 3.6 Illustrating the concept of controllability. (a) State P2 can be controlled directly by

choosing different experimental setups. (b) The reaction R1 is controlled by P2, as P2 is a substrate

of R1. (c) Control is propagated from R1 both forward (to its products) and backward (to its

substrates). (d) Applying this propagation iteratively allows us to analyze the remaining model.

(e) We find that state P2 exerts control over the entire model. (f) If the reaction R1 is removed, P2

loses its entire ability to control the model
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a b

c d

e f

Fig. 3.7 Activity and observability. Activity (right side) and observability (left side) are analyzed
similar to activity; however, some important differences exist. (Observability) In contrast to

Controllability, the initially observed states are the model outputs. A reaction is observable if

either one of its products or substrates is observable. It will propagate this observability to all its

substrates and catalysts (but, in contrast to Controllability, not to its products). (Activity) All states

with an initial concentration larger than zero are initially active. Frequently, the set of initially

active states will either be identically to or a superset of the controlled states. However, it is

insufficient that one substrate or catalyst of a reaction is active to propagate activity to a reaction.

Instead, all substrates and catalysts have to be active. Reactions in turn only propagate activity in a

forward fashion to all their products, but not to their substrates or catalysts
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Summary

Controllability
Input State SI:

Controls itself by definition.

Controls a reaction Rn if ðSubsR Rnð Þ [ CatR Rnð ÞÞ contains any controlled

states, i.e., if any substrate or catalyst of is Rn controlled.

Controls a state Sn if ðSubsSðSÞ [ Prod Snð ÞÞ contains any controlled

reactions, i.e., if any reaction that either consumes or produces Sn is

controlled.

Observability
A state Sn:

Is observable by definition if Sn is an output state

Is observable if SubsS Snð Þ [ CatS Snð Þð Þ contains any observable reaction

A reaction Rn:

Is observable if SubsR Rnð Þ [ Prod Rnð Þð Þ contains any observable state

Activity
A state Sn:
Is active if it has an initial concentration larger than zero

Is active if Prod Snð Þ contains any active reactions

A reaction Rn:

Is active if all states in SubsR Rnð Þ [ CatR Rnð Þð Þ are active

Modeling Implications
A model that contains any inactive or unobservable reactions is redundant.
A model that contains any inactive output state is invalid.
Amodel that violates any experimentally established input/output dependencies

is invalid.

3.5 The Reduction Graph Data Structure

In order to better visualize the concepts introduced in Sect. 3.3, it can be helpful to

further analyze the structure of the reduction space in a way that does not depend on

the model we want to reduce. We already characterized the reduction space as the

powerset of all reduction candidates. We can utilize this by analyzing the inclusion

structure, i.e., the subset/superset relation between its elements. This inclusion

structure can be visualized by a special graph called Hasse diagram. Hasse
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diagrams are utilized to visualize Partially ordered sets, of which powersets are one

example.

Any reduction candidate R1 that is a subset of another candidate R2 will be

considered an ancestor of R2. If, in addition, R1 has exactly one element less than

R2, R1 will be called the direct ancestor or parent. Inversely, R2 will be called a

descendant of R1 if R2 is a superset of R1 and a direct ancestor or child of R1 if R2

has exactly one element more than R1.

To generate a Hasse diagram, we construct a graph in which each reduction

candidate (including the empty set) is assigned one node. Every node is connected

to its direct descendants by a directed edge. The result is a hierarchical, directed

acyclic graph starting from the empty reduction (which has no incoming edges) to

the complete reduction (which has no outgoing edges). All elements of one hierar-

chical level remove exactly the same number of reduction candidates.

The theorem in Sect. 3.3.1, can be reinterpreted in this context:

1. If a reduction is identified as valid, all nodes that have a directed edge leading to

this reduction can also be marked as valid reductions

2. If a reduction is identified as invalid, nodes that can be reached from this

reduction can also be marked as invalid

Based on this interpretation, we can reinterpret the analysis of the reduction set

as a path-finding problem in a graph: we are interested in all nodes that can be

reached by directed paths that start at the empty reduction set node. This allows us

to utilize path-finding algorithms designed for different graph-based problems with

little adaptions.

When analyzing the reduction graph of a model, it becomes obvious that most

valid and invalid reductions can be verified/rejected indirectly. Based on the

considerations in the previous section we find that every valid reduction that also

has a valid descendant can be validated indirectly. Likewise, any invalid reduction

that has an invalid ancestor can be rejected without the need for explicit model

checking.

Only two types of reductions have to be tested explicitly. Invalid reductions that

have only valid parents have to be rejected by direct testing. We will call these

reductions minimal invalid reductions. The description “minimal” is used to clarify

that all models that remove only a subset of a minimal invalid reduction are valid.

Similarly, valid reductions that have no valid children will be called maximal valid
reductions. To completely analyze the reduction space of a model, it is both

necessary and sufficient to find both the set of minimal invalid reductions and the

set of maximal valid reductions. However, in reality, we find that direct identifica-

tion of these sets is rarely possible. Instead, our goal is to find heuristic search

strategies that minimize the direct testing performed for reductions that are neither

maximal valid nor minimal invalid (Fig. 3.8).
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3.6 Search Strategies

The strategies we will introduce in this chapter all utilize a candidate list that is

updated with each accepted or rejected reduction step. If a reduction is accepted, all

its direct descendants that have not already been rejected are added to the end of the

candidate list. If a reduction is rejected all its descendants that are currently

in the candidate list are removed. The order in which candidates are picked from

the list (e.g., oldest first, newest first. . .) determines the exact algorithm. These

strategies are strongly similar to path-searching algorithms for graphs. A common

property of all candidate-generating strategies is that every reduction directly tested

(except the empty reduction set) will always have at least one valid parent.

3.7 Basic Search Strategies

A Breadth first search strategy is one of the basic approaches to analyzing the

reduction graph. It is implemented as a candidate generating strategy that always

picks the first element of the priority queue, i.e., the oldest element as new candidates

are added to the end of the queue. This is also called a first in first out priority strategy.

There are strong similarities between this search strategy and the a priori

algorithm for frequent item set mining as introduced by Agrawal et al. (1994).

Several results regarding the best- and worst-case runtime of the a priori algorithm

can be transferred to the Breadth first search strategy. Like the a priori algorithm, a

breadth first search operates in a semideterministic fashion. If multiple breadth first

runs are started, they will always explicitly test the same reductions, potentially in a

varying order.

Based on the analysis of the a priori algorithm, we can also make observations

regarding the number of unnecessary explicit tests performed. A breadth first search

will only test nodes whose ancestors have all been verified, i.e., accepting a node

during a breadth first search will never result in additional information gain. Vice

versa, all nodes that will be rejected will be minimal invalid reductions, as they

have no invalid ancestors. The result is that the breadth first search will always

explicitly test all valid nodes, but in turn only test those invalid nodes that cannot be

avoided to be tested.

Based on this we find two general applications; if a model either has only a very

small number of valid reductions or rejecting an invalid reduction is on average

significantly more costly than accepting a valid reduction.

A depth first search strategy can be implemented very similar to a breadth first

search, with the difference that the last item of the candidate queue is picked at each

step, i.e., the item that has been added most recently (a last in first out priority

strategy). However, the resulting search dynamics will strongly diverge from the

behavior of a breadth first algorithm. In general, the performance of a depth first

search will vary significantly between different restarts.
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Fig. 3.8 The reduction graph data structure. (a) The unreduced base model is mapped to the root

node (�) or empty reduction of the reduction graph. It is always valid. (b) The reduction B is

topologically invalid. It is mapped to node (R3, R5, R6). (c) The initial reduction graph for the base

model (a), after topological analysis but prior to starting a reduction run. Note that only

the reactions R3–R6 are reduction candidates, R1 + R2 are considered established reactions.

Red nodes are topologically invalid, gray nodes are redundant. Redundant nodes are connected
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A depth first search will most of the time attempt to verify reductions larger than

the last accepted reduction. Only if all descendants of the current reduction are

rejected will the depth first search start to trace back to earlier reductions. Ideally,

the search will find large valid reductions early in its course, indirectly verifying a

large number of valid reductions, thus significantly outperforming the Breadth first

search. However, if a small invalid reduction is missed, a depth first search can

end up getting “stuck” rejecting all its descendants in an unfavorable order. The

following example illustrates this problem and compares the approach of the depth

first to the breadth first approach.

Both breadth- and depth first approaches will perform very badly if the space of

valid reductions is structured in certain ways. The number of verifications required

by breadth first approaches grows proportionally to the size of the solution space

even if the solution space is structured very regular. In contrast, depth first searches

can get stuck in irregular-shaped solution spaces. Therefore it makes sense to

include a random walk-based strategy as a benchmarking baseline. In such a

strategy a random member of the priority queue is chosen at each step. Interest-

ingly, we find that such a random walk-based search will often outperform both

breadth- and depth first approaches. This illustrates that the problematic cases

discussed for breadth- and depth first approaches occur with significant frequency

in modeling applications, and that strategies to deal with these cases are required

(Fig. 3.9).

3.8 Hybrid Switching Approach

If we compare the performance of breadth-first, depth-first, and random walk search

during an reduction run as illustrated in Fig. 3.10, we find recurring properties.

At the start of the reduction run, the depth-first strategy will often outperform both

alternative strategies. The depth first strategy initially identifies large valid

reductions with a higher frequency then both alternatives. This offers a significant

indirect information gain by indirectly verifying a large number of smaller reduc-

tion candidates. However, it subsequently gets stuck rejecting a large number of

reductions with very small indirect information gained for each rejection.

In contrast, the breadth first search exclusively gains indirect information by

rejecting invalid reductions, as has already been discussed. This will often result in

�

Fig. 3.8 (continued) by an arrow to the reduction that is obtained by removing all obsolete

elements from them. If a search encounters such a redundant node, it automatically skips to the

node indicated by the arrow as it is a unique representative of this redundancy group. (d) Both (R3,

R4) and (R3, R5) are redundant. The unique representative of this redundancy group is the

reduction (R3, R4, R5). (e) Explicitly testing the reduction (R4, R5) can have two results. If it is

accepted, this will indirectly verify (R5). If it is rejected, this will indirectly reject (R3, R4, R5) and

(R4, R5, R6). The resulting reduction graph for either case is illustrated
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c d

e f

Fig. 3.9 Direct and indirect validation and rejection in the reduction graph. (a) Most search

strategies will start at the root node of the reduction graph. (b) Verifying that (2) is a valid

reduction does not provide indirect information gain. (c) Verifying node (2,3) also verifies

node (3). Note that node (2) has already been verified, so it does not count as indirect information

gain, despite being an ancestor of node (2,3). (d) Similar to (c), rejecting (1,2,3) results in indirect
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Fig. 3.9 (continued) information gain by indirectly rejecting (1,2,3,4) (e) In the situation as

displayed in d, the analysis of node (1,4) a next step is a smart choice. Either accepting or rejecting

it will result in the indirect analysis of two nodes. Note that no parent of (1,4) has been analyzed;

therefore, only a candidate picking, but not a candidate generating search strategy would be able to

utilize this reasoning to skip to node (1,4). In this example, node (1,4) is rejected, resulting in the

additional rejection of (1,2,4) and (1,3,4). (f) Once the complete graph is analyzed, we know all

valid reductions of the initial model

a b

c d

Fig. 3.10 Comparing depth first and breadth first random search. (a) Completely analyzed

reduction graph. (b) Best case of a search trace for a depth first search. The search initially rejects

(1) and indirectly rejects all its descendants. It then proceeds to analyze the remaining, valid part of

the reduction graph in only four steps. (c) A breadth first search will always identify (1) as an

invalid reduction during its first few steps. However, it will need to verify all remaining valid

reductions explicitly, resulting in a performance that is worse than the best case of a depth first

search as illustrated in (b). (d) However, if a depth-first analysis misses the small invalid

reductions and directly wanders to node (2,3,4), the rejections of the invalid reductions will be

done by backtracking from a large valid reduction. This case results in the worst-case performance

that is worse than the breadth first search

3 Systematic Complexity Reduction of Signaling Models and Application. . . 79



a slow initial phase, where a large number of small valid reductions are explicitly

tested. In exchange, the problem of long stretches of subsequent rejection with little

information gain is completely avoided, resulting overall in a stable performance

that has smaller information gains then the alternatives during early phases and

larger information gain towards the end.

From comparing all three basic strategies, we already know that on average, the

good early performance of the depth-first strategy and the good late performance of

the breadth-first strategy are insufficient to set off the respective disadvantages

when problematic situations are encountered. We also find that the advantages and

disadvantages of depth- and breadth-first search supplement each other.

An alternative to the weighted random walk we call hybrid switching approach

is to initially start with a DFS that is interrupted as soon as a certain number of

rejections has been reached. Once this has happened, either a new DFS is started

(that would use a path different from the initial DFS) or the DFS phase is stopped

and a BFS is started to analyze the remaining reduction space. Criteria that are

possible to decide the time of switching from DFS to BFS include the information

gained during the last DFS run or the number of remaining unknown reductions.

3.9 Application Example: Reducing a Model

of the CD95 Pathway

Regulation of cell death decisions via CD95 signaling involves complex dynamics

of the involved pro- and anti-apoptotic proteins, e.g., procaspase-8 and c-FLIP, and

their cleavage products. These sometimes interact in surprising, non-intuitive ways.

A signal that induces cell proliferation and survival at low concentrations can

induce apoptosis at higher concentrations, thus resulting in opposing effects

depending on whether a threshold is met (Lavrik et al. 2007). To understand not

only the qualitative level of these regulatory mechanisms, but the details of

the molecular interactions resulting in such a threshold behavior, researchers have

begun developing quantitative signaling models (Fricker et al. 2010). While these

models are currently able to illustrate the molecular dynamics encountered, they

typically suffer from indeterminacies stemming from either over specified models

or biologically relevant alternative architectures. This reduces their value in model-

based prediction, as parameter uncertainties will often directly result in uncertain

and ambiguous predictions. In this section, we will illustrate how model reduction

can be utilized to improve our understanding of the processes happening during this

signaling and to derive new models that better represent these processes.

To analyze the role of c-FLIP cleavage in apoptosis induction, we have used a

model describing the apoptotic branch of the CD95 signaling pathway as

implemented in (Fricker et al. 2010). This model is illustrated in Fig. 3.11. While

the model explains the interaction of c-FLIP in an intuitive way, it is considerably

underdetermined. Many intermediate states of the pathway can only be measured as
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groups and a significant number of potential reactions cannot be observed directly

as they occur in membrane-localized complexes that are difficult to measure in an

experimental context.

The model is roughly divided into three parts. The first part of the model

simulates the binding of the extracellular CD95L (CD95 ligand) to CD95R (CD95

receptor) (Suda et al. 1993). The activated receptor recruits FADD. Bound FADD

multimerizes and thus creates the membrane-localized DISC (Death Inducing

Signaling Complex), denoted as CD95 FADD in the model (Kischkel et al. 1995).

Fig. 3.11 Biological background, experimental data, and computational model of the CD95

pathway. (a) The DISC (Death Inducing Signaling Complex) is formed at the membrane.

Its most important parts are the CD95 ligand/receptor complex and FADD (Fas Associated

Death Domain) protein. Both Procaspase-8/10 and c-FLIPS/L are recruited by and bound to this

complex and further processed and activated. (b) Experimental measurements of various

molecules in the CD95 pathway during stimulation experiments. For protein measurements, the

x-axis denotes time while the y-axis denotes relative intensity. Blue error bars are the measured

points, green lines are simulations by the pathway model (c) with different parameter sets.

All simulations have similar overall quality. For the cell death measurements, the x-axis denotes
the number of the experiments, each blue circle is a separate experiment. The y-axis denotes the
number of cells that had died by the end of the experiment. Red x’s are again the result of

simulating the CD95 model with different parameter sets. (c) The CD95 model. Equally colored

species were measured as one experimental concentration; dissociation reactions were omitted for

clarity. Reactions that are candidates for removal have been highlighted in red. Our goal is to find

model reductions that are roughly as good as the simulations illustrated in (b), but contain fewer of

the reactions marked as reduction candidates
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Fig. 3.12 Model reductions of the full CD95 signaling model and CD95 consensus model. The 14

reduced models are summarized in (a–d) by including any one (c, d) or two (a) edges of the same

color or one edge of each color (b). A recurring pattern is that all reductions include the activation

of the C8 homodimer by either the C8 or the p43 heterodimer. This illustrates that clearly the

interaction of homo- and heterodimers is an essential part of the pathway dynamics and that

limiting the model to homo–homo and hetero–hetero interactions is not a valid approach. The

minimal reductions summarized in (c) can be considered questionable in a biological context; it

seems unlikely that the C8 homodimer can activate the C8 heterodimer but not itself while the C8

heterodimer cannot act as catalyst at all. This illustrates that our current set of experimental data is

insufficient to completely characterize the CD95 pathway in a satisfying fashion. The same holds

true for the reductions summarized in (d); it seems biologically questionable that C8 homodimers

show no catalytic activity. Based on these considerations we derive a new consensus model based

on the minimal reductions summarized in (a) + (b). Both (a) and (b) retain the autocatalytic

activation of the C8 homodimer. In addition, both models have to include the activation of the C8

homodimer by either the C8 or the p43 heterodimer. As either reaction is fine, it can be reasoned

that current data suggests that both reactions are dynamically very similar. The resulting hypothe-

sis that the C8 homodimer is activated by both the C8 heterodimer and the p43 heterodimer with
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The second part of the model summarizes the binding reactions of procaspase-8

and c-FLIP isoforms to the DISC which results in the formation of different types of

dimers. Three types of catalytically active dimers are formed: procaspase-8-

homodimers (called C8 dimers), procaspase-8/c-FLIPL heterodimers (called C8

heterodimers), and procaspase-8/c-FLIPS heterodimers (Neumann et al. 2010).

The third part of the model focuses on the activation of the different procaspase-8

dimers. C8 dimers and C8 heterodimers are proteolytically activated by (spatially)

neighboring dimers and further processed. In contrast the procaspase-8/c-FLIPS
heterodimer is not processed further. The procaspase-8 part of the dimers is cleaved

into the active form p43/p41, resulting in p43/p41 homo- and heterodimers. p43

homodimers are further processed into the caspase-8 tetramer containing the cleav-

age product p18.

The proteolytically activated heterodimers p43/p41 and p18 forms of

procaspase-8 can contribute to the progression of apoptosis by activating various

downstream effector caspases. This effect is summarized as the cleavage of apo-

ptosis substrate. The model state “apoptosis” is measured by rate of cell death

experimentally.

The part of the model that is most severely underdetermined is the activation of

both C8 homodimer and C8 heterodimer. It is known that this reaction has to be

catalyzed; however, C8 homodimer, C8 heterodimer, p43 homodimer, and p43

heterodimer are all candidates as possible catalysts for both reactions. The initial

model therefore includes four activating reactions for each C8 homodimer and C8

heterodimer, one for each possible catalyst. A similar situation occurs for the

activation of apoptosis substrate; here, both p43 heterodimer and p43 homodimer

are potential candidates for catalyzing this reaction.

We applied the model reduction approach as introduced in the previous chapter

to the unreduced base model of the CD95 pathway, using all reactions that activated

either the C8 homodimer, the C8 heterodimer, or the apoptosis substrate as reduc-

tion candidates. The total set of reduction candidates contained 11 reactions,

resulting in 211 ¼ 2,048 possible reduction sets. Redundancy and validity analysis

reduced the unknown model space by about 45% to a total of 1,158 nonredundant

reductions.

Running the reduction search identified 237 reductions as valid, the 921 other

reductions were invalidated. The model space can be characterized by 14 minimal

valid reductions and eight maximal invalid reductions, as illustrated in Fig. 3.12.

All minimal models reproduce the experimental data with an error score compara-

ble to the unreduced base model. All valid reductions included the activation of

�

Fig. 3.12 (continued) the same rate is consistent with modeling results. Additional experiments

with a c-FLIPL cleavage mutant were performed and compared to the behavior of wildtype

c-FLIPL (f). In the mutant cell line the activation of C8 heterodimer to p43 heterodimer is blocked,

no p43 heterodimer is produced. Quantification of cell survival (g) shows that cell survival rates

are the same for wildtype and cleavage mutant cells, supporting the hypothesis that the C8

heterodimer activation does not change its catalytic influence on C8 homodimer activation.
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apoptosis substrate by the p43 heterodimer. The largest valid reduction removes six

reactions, any reduction removing seven reactions is invalid.

Every valid reduction includes the activation of the C8 homodimer by either the

C8 heterodimer or the p43 heterodimer. In turn the autocatalytic activation of

the C8 homodimer or the activation of the C8 homodimer by the p43 heterodimer

is also included. The minimal satisfactory solution for these two conditions, the

activation of C8 homodimer by the p43 heterodimer, but not by either itself or

the C8 homodimer is part of various valid reductions. Indeed, the autocatalytic

activation of the C8 homodimer is retained only in 4 out of 14 minimal reductions,

although there is a strong biochemical evidence reported showing formation of C8

homodimers at the DISC.

The interpretation of these properties confirms that the role of c-FLIPL cannot

simply be reduced to that of an inhibitor of CD95 signaling. Instead, the C8

heterodimer acts as a catalyst for the activation of C8 homodimers, either directly

or in the activated p43 heterodimer version. However, various reported mechanisms

of caspase-8 activation cannot be verified based on the experimental data currently

available. This mainly concerns the catalytic activity of C8 both in homo- and

heterodimer form. We expect that the autocatalytic activation of C8 homodimers is

an essential process in the CD95 apoptosis signaling; yet our experimental data

does not reflect this.
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